Remember with quadratics the graph is a parabola. Parabolas are symmetric and the axis of symmetry is down the middle of the graph. A parabola can cross the x-axis once, twice or not at all. The point(s) where the graph crosses the x-axis are called the zeros of the function or the roots of the equation.

 $y = (x - a)^2$ horizontal translation $y = x^2 + a$ vertical translation $y = ax^2$ vertical reflection and vertical dilation

Different forms of quadratic functions/equations

Standard form $y = ax^2 + bx + c$ Factored form $y = a(x - r_1)(x - r_2)$ Intercept form y = (ax + b)(cx + d) intercepts $\left(\frac{-b}{a}\right)$ or $\left(\frac{-d}{c}\right)$ Turning point form (Vertex form) $y = a(x - p)^2 + q$ turning point/vertex (p, q)

Quadratic formula: If $y = ax^2 + bx + c$, then $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$.

Discriminant $b^2 - 4ac$ Use the discriminant to determine the nature of the roots. if $b^2 - 4ac > 0$ 2 real roots if $b^2 - 4ac = 0$ 1 real root if $b^2 - 4ac < 0$ 2 complex roots

Sum and product of roots for quadratic equations: Sum: $-\frac{b}{a}$ Product: $\frac{c}{a}$

Completing the square: $ax^2 + bx + c$ You Try: Complete the square. $4x^2 + 40x + 125$

1. Take out a, leaving the constant alone: $a\left(x^2 + \frac{b}{a}x\right) + c$ 2. Complete the square and factor: $a\left[\left(x + \frac{b}{2a}\right)^2 - \left(\frac{b}{2a}\right)^2\right] + c$

3. Multiply out the outer bracket:
$$a\left(x+\frac{b}{2a}\right)^2 - \frac{b^2}{2a} + c$$

4. Tidy up the constants:
$$a\left(x+\frac{b}{2a}\right)^2 - \left(\frac{b^2-4ac}{4a}\right)$$

Graphing inequalities (linear or quadratic):

- 1. Graph as if the inequality was an equal sign.
- 2. Shade the solution area. (pick a point, use end behavior or read the inequality sign)