Remember with quadratics the graph is a parabola. Parabolas are symmetric and the axis of symmetry is down the middle of the graph. A parabola can cross the x-axis once, twice or not at all. The point(s) where the graph crosses the x-axis are called the zeros of the function or the roots of the equation.
$y=(x-a)^{2}$ horizontal translation
$y=x^{2}+a$ vertical translation
$y=a x^{2}$ vertical reflection and vertical dilation
Different forms of quadratic functions/equations
Standard form $y=a x^{2}+b x+c$
Factored form $y=a\left(x-r_{1}\right)\left(x-r_{2}\right)$
Intercept form $y=(a x+b)(c x+d)$ intercepts $\left(\frac{-b}{a}\right)$ or $\left(\frac{-d}{c}\right)$
Turning point form (Vertex form) $y=a(x-p)^{2}+q$ turning point/vertex (p, q)
Quadratic formula: If $y=a x^{2}+b x+c$, then $x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$.
Discriminant $b^{2}-4 a c$ Use the discriminant to determine the nature of the roots. if $b^{2}-4 a c>02$ real roots if $b^{2}-4 a c=0 \quad 1$ real root if $b^{2}-4 a c<0 \quad 2$ complex roots

Sum and product of roots for quadratic equations: Sum: $-\frac{b}{a} \quad$ Product: $\frac{c}{a}$
Completing the square: $a x^{2}+b x+c$
You Try: Complete the square.

$$
4 x^{2}+40 x+125
$$

1. Take out a, leaving the constant alone: $a\left(x^{2}+\frac{b}{a} x\right)+c$
2. Complete the square and factor: $a\left[\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b}{2 a}\right)^{2}\right]+c$
3. Multiply out the outer bracket: $a\left(x+\frac{b}{2 a}\right)^{2}-\frac{b^{2}}{2 a}+c$
4. Tidy up the constants: $a\left(x+\frac{b}{2 a}\right)^{2}-\left(\frac{b^{2}-4 a c}{4 a}\right)$

Graphing inequalities (linear or quadratic):

1. Graph as if the inequality was an equal sign.
2. Shade the solution area. (pick a point, use end behavior or read the inequality sign)
