Math AA HL Chapter 22 Continuous Probability Distributions

Continuous Random Variables: The probability is equal to the area under the curve so to find the probability we integrate the function and then evaluate it over an interval.

For the range $a \leq x \leq b \int_{a}^{b} f(x) d x=1$
Expectation $\mathrm{E}(\mathrm{x})=E(x)=\int_{a}^{b} x f(x) d x$ for values $a \leq x \leq b$
If probability density functions are symmetric then $\mathrm{E}(\mathrm{x})$ is the line of symmetry. This is true for Normal distribution.

Expectation for $\mathrm{g}(\mathrm{x}) \quad E(g(X))=\int_{a}^{b} g(x) f(x) d x$ for values $a \leq x \leq b$

Expectation for $\mathrm{X}^{2} \quad E\left(X^{2}\right)=\int_{a}^{b} x^{2} f(x) d x$ for values $a \leq x \leq b$
Variance: $\operatorname{Var}(\mathrm{X})=\mathrm{E}(\mathrm{X}-\mu)^{2}$ or $\operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}^{2}(\mathrm{X})$ so

$$
\begin{aligned}
\operatorname{Var}(\mathrm{X}) & =\int_{a}^{b} x^{2} f(x) d x-\left(\int_{a}^{b} x f(x) d x\right)^{2} \\
\sigma^{2}=\operatorname{Var}(\mathrm{X}) & =\int_{a}^{b}(x-\mu)^{2} f(x) d x
\end{aligned}
$$

The mode: Most often - so it is determined by the maximum. To find the maximum take the derivative of the function and find when the derivative equals zero.

Median (m) middle - $\int_{a}^{m} f(x) d x=\frac{1}{2}$
Normal Distribution
Probability density function for normal distribution $f(x)=\frac{e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}}{\sigma \sqrt{2 \pi}}$

1. area under the curve is 1
2. symmetrical around $\mu \mathrm{P}(-\mathrm{a} \leq \mathrm{X} \leq \mathrm{a})=2 \mathrm{P}(0 \leq \mathrm{X} \leq \mathrm{a})$ and $\mathrm{P}(\mathrm{X} \geq \mu)=\mathrm{P}(\mathrm{X} \leq \mu)=0.5$
3. can find probability of any value but the farther from μ the small probability.
4. approximately 95% of the values are within 2 standard deviations.
5. approximately 99.8% of the values are within 3 standard deviations.
6. the maximum value occurs when $\mathrm{x}=\mu$ and is given by $f(x)=\frac{1}{\sigma \sqrt{2 \pi}}$
7. $\mathrm{E}(\mathrm{X})=\mu$
8. $\operatorname{Var}(\mathrm{X})=\sigma^{2}$

Calculator Standard Normal Distribution versus Normal Distribution

Standard Normal Distribution

$$
\mathrm{Z} \sim \mathrm{~N}(0,1)
$$

lower tail

$$
\mathrm{P}(\mathrm{Z} \leq \mathrm{x}) \text { normalcdf }\left(-1 \times 10^{99}, \mathrm{x}\right)
$$

upper tail
$\mathrm{P}(\mathrm{Z} \geq \mathrm{x})$ normalcdf($\left.\mathrm{x}, 1 \times 10^{99}\right)$

Normal Distribution

$$
X \sim N\left(\mu, \sigma^{2}\right)
$$

lower tail

$$
\mathrm{P}(\mathrm{X} \leq \mathrm{x}) \text { normalcdf }\left(-1 \times 10^{99}, \mathrm{x}, \mu, \sigma\right)
$$

upper tail
$P(X \geq x) \operatorname{normalcdf}\left(x, 1 \times 10^{99}, \mu, \sigma\right)$

InvNorm - used to find the inverse of normal distribution. Inverse Noramal is only used with the lower tail. So upper tail must use 1- lower tail \%

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Z} \leq \mathrm{a})=\% \\
& \quad \text { invNorm(} \%)
\end{aligned}
$$

$$
P(X \leq a)=\%
$$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{Z} \geq \mathrm{a})=\% \\
& \quad \text { invNorm(} 1-\%)
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{P}(\mathrm{X} \geq \mathrm{a})=\% \\
& \quad \operatorname{invNorm}(1-\%, \mu, \sigma)
\end{aligned}
$$

Finding mean (μ) or standard deviation (σ)
Must use Standard normal distribution because μ or σ are unknown. $Z=\frac{X-\mu}{\sigma}$
Example: If $\mathrm{X} \sim \mathrm{N}(\mu, 7)$ and $\mathrm{P}(\mathrm{x} \geq 22)=.729$, find the value of μ.
$1^{\text {st }}$ make a sketch

$22 \quad 1$
upper tail. 729 lower tail .271
$\operatorname{invNorm}(.271)=-.6097913937 \approx-.610$

$$
Z=\frac{X-\mu}{\sigma} \quad-.610=\frac{22-\mu}{\sqrt{7}} \text { so } \mu=26.3
$$

In applications of normal distribution it is helpful to convert the given information into the symbolic equivalent.

