
Math AA HL Chapter 22  Continuous Probability Distributions 
 
Continuous Random Variables:  The probability is equal to the area under the curve so to find 
the probability we integrate the function and then evaluate it over an interval. 
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If probability density functions are symmetric then E(x) is the line of symmetry.  This is true for 
Normal distribution. 
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Variance:  Var(X) = E(X - μ)2   or  Var(X) = E(X2) – E2(X)  so        
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The mode:  Most often – so it is determined by the maximum.  To find the maximum take the 
derivative of the function and find when the derivative equals zero. 
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Normal Distribution 
 

Probability density function for normal distribution  
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 1.  area under the curve is 1 
 2.  symmetrical around μ  P(-a ≤ X ≤ a) = 2P( 0 ≤ X ≤ a) and P(X ≥ μ) = P(X ≤ μ) = 0.5  
 3.  can find probability of any value but the farther from μ the small probability. 
 4.  approximately 95% of the values are within 2 standard deviations. 
 5.  approximately 99.8% of the values are within 3 standard deviations. 

 6.  the maximum value occurs when x = μ and is given by   
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 7.  E(X) = μ  
 8.  Var(X) = σ2 
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Calculator  Standard Normal Distribution versus Normal Distribution 
 Standard Normal Distribution    Normal Distribution 

             
 
 Z ~ N(0, 1)             X ~ N(μ, σ2) 
lower tail      lower tail 
      P(Z ≤ x)  normalcdf(-1x1099, x)        P(X ≤ x)  normalcdf(-1x1099, x, μ, σ) 
upper tail      upper tail 
     P(Z ≥ x)  normalcdf(x, 1x1099)        P(X ≥ x)  normalcdf(x, 1 x 1099, μ, σ) 
  
InvNorm – used to find the inverse of normal distribution.   Inverse Noramal is only used with 
the lower tail.  So upper tail must use 1- lower tail % 
 P(Z ≤ a) = %     P(X ≤ a) = % 
                     invNorm( % )              invNorm(%, μ, σ) 
 
    P(Z ≥ a) = %     P(X ≥ a) = % 
                     invNorm( 1-% )              invNorm( 1-%, μ, σ) 
 
 
Finding mean (μ) or standard deviation (σ)  

 Must use Standard normal distribution because μ or σ are unknown.  
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    Example:  If X ~ N(μ, 7) and P(x ≥ 22) = .729, find the value of μ. 
 1st make a sketch  upper tail .729  lower tail .271 
     invNorm(.271) = -.6097913937 ≈ -.610  
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In applications of normal distribution it is helpful to convert the given information into the 
symbolic equivalent.   
 
 
 

μ 
22 

72.9% 


