Math AA HL Chapter 22 Continuous Probability Distributions

Continuous Random Variables: The probability is equal to the area under the curve so to find the probability we integrate the function and then evaluate it over an interval.

For the range
$$a \le x \le b$$
 $\int_a^b f(x) dx = 1$

Expectation $E(x) = E(x) = \int_{a}^{b} x f(x) dx$ for values $a \le x \le b$

If probability density functions are symmetric then E(x) is the line of symmetry. This is true for Normal distribution.

Expectation for g(x) $E(g(X)) = \int_{a}^{b} g(x) f(x) dx$ for values $a \le x \le b$

Expectation for X² $E(X^2) = \int_a^b x^2 f(x) dx$ for values $a \le x \le b$

Variance: $Var(X) = E(X - \mu)^2$ or $Var(X) = E(X^2) - E^2(X)$ so $Var(X) = \int_{a}^{b} x^{2} f(x) dx - \left(\int_{a}^{b} x f(x) dx\right)^{2}$ $\sigma^{2} = \operatorname{Var}(\mathsf{X}) = \int_{-\infty}^{b} (x - \mu)^{2} f(x) dx$

The mode: Most often - so it is determined by the maximum. To find the maximum take the derivative of the function and find when the derivative equals zero.

Median (m) middle -
$$\int_{a}^{m} f(x) dx = \frac{1}{2}$$

Normal Distribution

Probability density function for normal distribution $f(x) = \frac{e^{\frac{-(x-\mu)^2}{2\sigma^2}}}{\sigma \sqrt{2\pi}}$

- 1. area under the curve is 1
- 2. symmetrical around μ P(-a $\leq X \leq a$) = 2P($0 \leq X \leq a$) and P($X \geq \mu$) = P($X \leq \mu$) = 0.5
- 3. can find probability of any value but the farther from μ the small probability.
- 4. approximately 95% of the values are within 2 standard deviations.
- 5. approximately 99.8% of the values are within 3 standard deviations.
- 6. the maximum value occurs when $x = \mu$ and is given by $f(x) = \frac{1}{\sigma \sqrt{2\pi}}$

7. $E(X) = \mu$ 8. $Var(X) = \sigma^2$

InvNorm – used to find the inverse of normal distribution. Inverse Noramal is only used with the lower tail. So upper tail must use 1- lower tail %

 $P(Z \le a) = \%$ $P(X \le a) = \%$

 invNorm(%) $invNorm(\%, \mu, \sigma)$
 $P(Z \ge a) = \%$ $P(X \ge a) = \%$

 invNorm(1-%) $invNorm(1-\%, \mu, \sigma)$

Finding mean (μ) or standard deviation (σ)

Must use Standard normal distribution because μ or σ are unknown. $Z = \frac{X - \mu}{\sigma}$ Example: If $X \sim N(\mu, 7)$ and $P(x \ge 22) = .729$, find the value of μ . 1st make a sketch upper tail .729 lower tail .271 invNorm(.271) = -.6097913937 \approx -.610 $Z = \frac{X - \mu}{\sigma}$ -.610 = $\frac{22 - \mu}{\sqrt{7}}$ so $\mu = 26.3$

In applications of normal distribution it is helpful to convert the given information into the symbolic equivalent.