Section 21.1 Introduction to discrete random variables.

Discrete random variable has the following properties:
It is a discrete variable - exact value
It can only assume certain values, $x_{1}, x_{2}, x_{3}, \ldots x_{n}$.
Each value has an associated probability, $\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{1}\right)=\mathrm{p}_{1}, \mathrm{P}\left(\mathrm{X}=\mathrm{x}_{2}\right)=\mathrm{p}_{2}$ etc.

$$
\left(\mathrm{P}\left(\mathrm{X}=\mathrm{x}_{1}\right)=\mathrm{p}_{1} \text { is read the probability that } \mathrm{X}=\mathrm{x}_{1} \text { is } \mathrm{p}_{1}\right)
$$

The probabilities add up to 1 , so $\sum_{i=1}^{i=n} P\left(X=x_{1}\right)=1$
A discrete variable is only random if the probabilities add up to 1 .
To find the probability you can use a tree diagram or look for a pattern. There is also the possibility that a function will be given so you can determine the probability.

Section 21.2 Expectation and Variance

Practical approach - what happens when you practice or try the experiment. A practical approach will result in data that can be used to find a frequency distribution and a mean value.

Theoretical approach - what we think or predict the outcomes will be. A theoretical approach results in a probability distribution and an expected value.

Expected value - what we expect the mean to be if we have a large number of terms averaged together.

Expected value $\sum_{\text {all } \mathrm{x}} \mathrm{x} \cdot \mathrm{P}(\mathrm{X}=\mathrm{x})$
The expectation of any function $f(x) \sum_{\text {all } x} f(x) \cdot P(X=x)$
Variance $-\operatorname{Var}(\mathrm{X}) \quad \operatorname{Var}(\mathrm{X})=\mathrm{E}\left(\mathrm{X}^{2}\right)-\mathrm{E}^{2}(\mathrm{X})$

Section 21.3 Binomial Distribution

Binomial distribution deals with events that can either happen or NOT happen. If a random variable X follows a binomial distribution we say $X \sim \operatorname{Bin}(n, p)$ where $n=$ number of times an event occurs and $\mathrm{p}=$ probability of success. The probability of failure $=\mathrm{q}=1-\mathrm{p}$. n and p are called the parameters of the distribution. Also the probability must stay the same for successive trials.

If $X \sim \operatorname{Bin}(n, p)$ then $P(X=x)={ }^{n} C_{r} p^{x} q^{n-x}$.

Calculator
binompdf - binomial probability distribution function. $\mathrm{n}=$ number of trials, $\mathrm{p}=$ probability of success and $s=$ successes On the calculator $\operatorname{binompdf}(\mathrm{n}, \mathrm{p}, \mathrm{s})$ It is located in distr menu, press $2^{\text {nd }}$ Vars and choose option " 0 ".
binomcdf - Binomial cumulative distribution function. $\mathrm{n}=$ number of trials, $\mathrm{p}=$ probability of success and $S=$ successes up to and including $(\leq S)$. On the calculator binomcdf(n, p, S) It is located in distr menu, press $2{ }^{\text {nd }}$ Vars and choose option " 0 ".

Expectation and variance of binomial distribution.
If $X \sim \operatorname{Bin}(n, p) \quad E(X)=n p \operatorname{Var}(X)=n p q$

