Probability:
$P($ Event $)=\frac{n(E)}{n(S)}=\frac{\text { number of event occurances }}{\text { total number of possible outcomes }}$
Remember: $0 \leq \mathrm{P}(\mathrm{A}) \leq 1 \quad$ (probability is always between 0 and 1 , inclusive)
$P(A)=0 \quad$ it will never happen
$\mathrm{P}(\mathrm{A})=1$ it will always happen
A^{\prime} is the complement of A
$\mathrm{P}(\mathrm{A})+\mathrm{P}\left(\mathrm{A}^{\prime}\right)=1$

Set notation: $\mathrm{P}(\mathrm{A}$ or B$)=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A}$ and B$) \quad$ or $\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})-\mathrm{P}(\mathrm{A} \cap \mathrm{B})$ S

If an event A can occur or an event B can occur but A and B cannot both occur, then the two events A and B are said to be mutually exclusive. In this case $P(A$ and $B)=P(A \cap B)=0$.

For mutually exclusive events
$\mathrm{P}(\mathrm{A} \cup \mathrm{B})=\mathrm{P}(\mathrm{A})+\mathrm{P}(\mathrm{B})$

If two events A and B are such that $A \cup B=S$ where S is the total probability space, then and the events A and B are said to be exhaustive.

If A and B are two events, then the probability of A given that B has already occurred is written as $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$. This is known as conditional probability.

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}
$$

If the occurrence or non-occurrence of an event A does not influence in anyway the probability of an event B then the event B is said to be independent of event $A . P(B \mid A)=P(B)$

Check for independence:
$\mathrm{P}(\mathrm{A}$ and B$)=\mathrm{P}(\mathrm{A}) \times \mathrm{P}(\mathrm{B})$

Tree diagram are useful with independent events.

Bayes' Theorem $\mathrm{P}(\mathrm{B} \mid \mathrm{A})=\frac{\mathrm{P}(\mathrm{A} \mid \mathrm{B}) \times \mathrm{P}(\mathrm{B})}{\mathrm{P}(\mathrm{B}) \mathrm{P}(\mathrm{A} \mid \mathrm{B})+\mathrm{P}\left(\mathrm{B}^{\prime}\right) \mathrm{P}\left(A \mid B^{\prime}\right)}$

Use Bayes' Theorem when you are given $\mathrm{P}(\mathrm{A} \mid \mathrm{B})$ and need $\mathrm{P}(\mathrm{B} \mid \mathrm{A})$

Combinations - choose items and the order does not matter

Permutations - choose items and the order does matter.

