Module 3 Topic 3 (M3T3) Introduction to Quadratic Functions

8. Standard Form $f(x)=a x^{2}+b x+c$ $a-$ direction $a>0 \text { opens up }$ $\mathrm{a}<0 \text { opens down }$ $\mathrm{c}-\mathrm{y} \text { intercept }(0, \mathrm{c})$	9. Vertex Form $f(x)=a(x-h)^{2}+k$ a - direction $\begin{array}{ll} \mathrm{a}>0 & \text { opens up } \\ \mathrm{a}<0 & \text { opens down } \end{array}$ Vertex - (h, k) Axis of symmetry: $x=h$	10. Factored Form $f(x)=a\left(x-r_{1}\right)\left(x-r_{2}\right)$ a - direction $a>0 \text { opens up }$ $\mathrm{a}<0 \text { opens down }$ r_{1} and r_{2} roots, zeros or x -intercepts $\left(\mathrm{r}_{1}, 0\right),\left(\mathrm{r}_{2}, 0\right)$ Axis of symmetry: $x=\frac{r_{1}+r_{2}}{2}$
12. Linear functions $\mathrm{f}(\mathrm{x})=\mathrm{mx}+\mathrm{b}$ $1^{\text {st }}$ difference - same $2^{\text {nd }}$ difference - zero Equation - linear Graph - line	13. Quadratic functions $f(x)=a x^{2}+b x+c$ $1^{\text {st }}$ difference - varies $2^{\text {nd }}$ difference - same Equation - quadratic Graph - parabola (\cup or \cap shape)	14. Exponential functions $f(x)=a b^{x}+q$ $1^{\text {st }}$ difference - varies $2^{\text {nd }}$ difference - varies The outputs have a common ratio. Equation - exponential Graph - a rounded corner
15. Average rate of change: $\frac{f(b)-f(a)}{b-a}$ 16. Calculating "a" 1. choose quadratic form 2. substitute the key point(s) 3. solve for "a" 4. write the equation by substituting the key point and the "a" value into the quadratic form.	17. Interval of Increase Domain (x values) where the y values increase	18. Interval of Decrease Domain (x values) where the y values decrease
19. Translation - slide	20. Reflection - flip $y=a(x-h)^{2}+k$ $\begin{aligned} & -1 \\ & \text { opposite sign } \\ & \text { vertical reflection }\end{aligned}$ $\begin{aligned} & -1 \\ & \text { opposite sign } \\ & \text { horizontal } \\ & \text { reflection }\end{aligned}$ $(\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{f}(\mathrm{x}) \quad$ or -y$)$ or $(\mathrm{x}, \mathrm{y}) \rightarrow(-\mathrm{x}, \mathrm{y})$	21. Dilation - size change $\begin{aligned} & y=a(x-h)^{2}+k \\ & \begin{array}{l} \text { vertical dilation } \\ \|\mathrm{a}\|>1 \text { narrower, steeper } \\ \|\mathrm{a}\|<1 \text { dilation } \\ \text { dizorter, wider } \end{array} \\ & \mathrm{y}=\mathrm{af}(\mathrm{x}) \quad \text { or } \quad \mathrm{y}=\mathrm{f}(\mathrm{ax}) \\ & (\mathrm{x}, \mathrm{y}) \rightarrow(\mathrm{x}, \text { ay }) \text { or }(\mathrm{x}, \mathrm{y}) \rightarrow\left(\frac{1}{a} \mathrm{x}, \mathrm{y}\right) \end{aligned}$

