Name

Day 1 Part 1 - Math 2 Factoring CW – Multiplying two binomials

Remember when you multiply a monomial and a binomial; you distribute the monomial to each term in the binomial. There are two ways to multiply the two binomials.

Method 1: Distribute each term in the first binomial to the second binomial then distribute the monomial to the two terms in the binomial. Then combine like terms. Example: Multiply You Try: Multiply

Practice: Multiply using method 1

1.
$$(x+2)(x+7)$$
 2. $(x+8)(x-3)$ 3. $(x-4)(x-2)$

Method 2: When you multiply two binomials you distribute each term in the first binomial to each term in the second binomial. In some way one can think of this as double distributing.

Example: Multiply $(x+2)(x+8) = x \cdot x + x \cdot 8 + 2 \cdot x + 2 \cdot 8$ $x^{2} + 8x + 2x + 16$ $x^{2} + 10x + 16$ so, $(x+2)(x+8) = x^{2} + 10x + 16$ You Try: Multiply (x+3)(x+5) = ---+ + ---+ + ----+(x+3)(x+5) = ---+ + ----+ + ----+

Practice: Multiply using method 2

4.
$$(x-2)(x+6)$$
 5. $(x-5)(x+9)$ 6. $(2x-7)(x-3)$

Class work Practice: Multiply using the method of your choice

7. (x-5)(x-6) 8. (x-2)(x-6) 9. (x-3)(x-6)

10.
$$(2x+5)(x+1)$$
 11. $(5x+2)(x-3)$ 12. $(3x-2)(x+6)$

Day 1 Part 2 - Math 2 Factoring CW – Multiplying a binomial and trinomial

Method 1: Distribute the first in the first binomial to the second trinomial then distribute the monomial to the three terms in the trinomial. Then combine like terms. Example: Multiply $(x + 2)(x^2 + 3x + 4)$ $(x + 2)(x^2 + 3x + 4) = x(x^2 + 3x + 4) + 2(x^2 + 3x + 4)$ $(x + 2)(x^2 + 3x + 4) = x^3 + 3x^2 + 4x + 2x^2 + 6x + 8$ $(x + 2)(x^2 + 3x + 4) = x^3 + 5x^2 + 10x + 8$

Example 2: Your turn: Multiply $(x + 1)(x^2 + 4x + 6)$

$$(x + 1)(x^{2} + 4x + 6) = (_____) + (_____)$$

$$(x + 1)(x^{2} + 4x + 6) = ____ + ___ + ___ + ___ + ___ + ___ + ____$$

$$(x + 1)(x^{2} + 4x + 6) = ____ + ___ + ___ + ____ + ____$$

Method 2: Multiplication square (Punnett Square). Write the binomial on one side and the trinomial on the side. Fill in the squares. Combine like terms on the diagonals.

Multiply:
$$(x-3)(x^2+5x-4)$$

Your turn: N	Multiply (x –	$2)(x^2 + 3x + 6)$
--------------	---------------	--------------------

	\mathbf{x}^2	5x	-4		
Х	x ³	5x ²	-4x		
-3	$-3x^2$	-15x	12		

 $(x-3)(x^2+5x-4) = x^3 + 2x^2 - 19x + 12$ $(x-2)(x^2+3x+6) =$ _____

Class work Practice: Multiply using the method of your choice

13.
$$(x-2)(x^2+3x+4)$$
 14. $(x-1)(x^2-2x+1)$ 15. $(x+1)(x^2+x+5)$

16.
$$(2x+1)(x^2+3x-7)$$
 17. $(5x-3)(x^2+4x+2)$ 18. $(3x+2)(x^2-x-5)$

Math 2 Factoring CW Day 2 Part 1 – Factoring
$$x^2 + bx + c$$

Remember multiplying is the opposite of factoring. Factoring means, to write as a product. In the case of polynomials sometimes you can factor a trinomial by writing it as the product of two binomials.

When you factor you need to think of the possibilities. What two variables or numbers multiply to give you the term? List the possibilities and choose the pair that works.

Analy	ytical questions: What mu	ltiplies to gi	ve you ${3^{rd} term}$	but to g + or – last sign	ive you? middle term
Exam	pple: Factor			You Try: Factor	
$x^{2} + x^{2}$	$7x + 12 = (__+__)(__$	+)		$x^2 + 11x + 24 = ($	_+)(+)
	work Practice: $x^2 + 10x + 16$	2.	$x^2 + 10x + 25$	3.	$x^2 + 18x + 32$
4.	$x^2 + 15x + 26$	5.	$x^2 + 25x + 66$	6.	$x^2 + 11x + 30$
7.	$x^2 + 22x + 40$	8.	$x^2 + 17x + 60$	9.	$x^2 + 17x + 42$
10.	$x^2 + 20x + 36$	11.	$x^2 + 13x + 40$	12.	$x^2 + 18x + 45$
13.	$x^2 + 8x + 16$	14.	$x^2 + 23x + 42$	15.	$x^2 + 20x + 64$

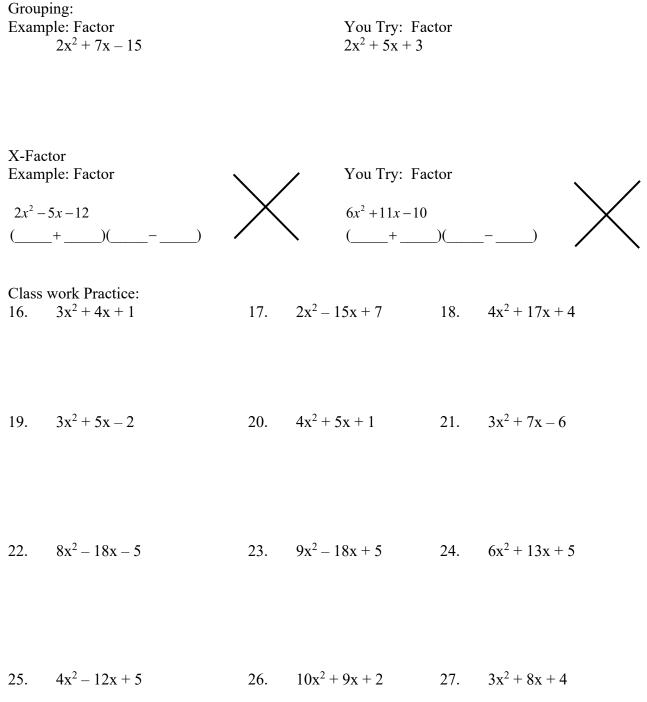
Math 2 Factoring CW Day 2 Part 2 – Factoring $x^2 - bx + c$

Remember multiplying two numbers whose product is positive, the two numbers could both be positive or the two numbers can both be negative.

When you factor you need to think of the possibilities. What two variables or numbers multiply to give you the term? List the possibilities and choose the pair that works.

Analy	tical questions:	What multiplies to gi	ve you	but	to give you _	?
			3^{rd} term	+ or – last sign		middle term
Exam	ple: Factor			You Try: Fac	ctor	
$x^2 - 7$	x + 12 = ()()		$x^2 - 16x + 15 = ($		_)()
	work Practice: $x^2 - 6x + 8$	17.	$x^2 - 17x + 42$	18.	$x^2 - 17x +$	16
19.	$x^2 - 23x + 42$	20.	$x^2 - 5x + 6$	21.	$x^2 - 11x +$	18
22.	$x^2 - 49x + 48$	23.	$x^2 - 12x + 20$	24.	$x^2 - 29x + 3$	54
25.	$x^2 - 32x + 60$	26.	$x^2 - 11x + 30$	27.	$x^2 - 15x + 2$	26
28.	$x^2 - 20x + 64$	29.	$x^2 - 12x + 36$	30.	$x^2 - 21x + $	68

Math 2 Factoring CW Day 3 Part 1 – Factoring
$$x^2 \pm bx - c$$


Remember multiplying two numbers whose product is negative, the two numbers must have different signs, one positive and one negative.

When you factor you need to think of the possibilities. What two variables or numbers multiply to give you the term? List the possibilities and choose the pair that works.

Analy	/tical questions: ?	What multipli	ies to gi	ve you but 3^{rd} term	+ or – last sign		middle term
Be ca	reful when choo	osing the sign	s of the	numbers.			term
Exam	ple: Factor			You	Гry: Fa	ctor	
$x^2 - 5$	5x - 24 = (+))()	$x^2 - 3x - 18 =$		+)()
$x^{2} + 4$	4x - 21 = (+))()	$x^{2} + 4x - 32 =$	= (+)()
	work Practice: $x^2 + 12x - 45$		2.	$x^2 + 5x - 50$	3.	$x^2 + 4x - 60$	
4.	$x^2 - 2x - 15$		5.	$x^2 - 11x - 42$	6.	$x^2 - 7x - 18$	
7.	$x^2 + 13x - 30$		8.	$x^2 + 31x - 66$	9.	$x^2 - 6x - 40$	
10.	$x^2 - x - 12$		11.	$x^2 + 6x - 27$	12.	$x^2 + 15x - 54$	ŀ
13.	$x^{2} + 5x - 24$		14.	$x^2 - 4x - 12$	15.	$x^2 - 20x - 44$	Ļ

Math 2 Factoring CW Day 3 Part 2 – Factoring $ax^2 \pm bx \pm c$

A leading coefficient is the coefficient of the term with the highest exponent. In this case the leading coefficient is the coefficient of x^2 . Factoring quadratics with a leading coefficient other than 1 takes a few extra steps. Here are two methods to factoring these quadratics, grouping and x-factor.

Math 2 Factoring CW Day 4 Part 1 – Factoring the difference of two squares and Perfect square trinomials

Multiply the following:

1.	(x - 10)(x + 10)	2.	(3x-2)(3x+2)		3.	(a – b)(a + b)	
4. He	ow are each of these problems	the sam	ne?				
5. W	hat is unique about each produ	uct?					
6. Us	se algebraic vocabulary to deso	cribe the	e pattern shown in each	n produc	ct		
Use t	his pattern to factor each of the	e follow	ving.				
7.	$x^2 - 9$	8.	$x^{2}-4$		9.	$x^2 - 81$	
Mult	ply the following: <i>Remember</i>	r(r+1)	r^{2} means $(r + 1)(r + 1)$				
				•			
10.	$(x + 4)^2$	11.	$(x-3)^2$		12.	$(a + b)^2$	
13. H	How are each of these problem	s the sa	me?				
14. V	What is unique about the first a	ind last	terms of each product?				
15. What pattern do you notice in each middle term of the product?							
Use this pattern to factor each of the following.							
16.	$x^2 - 10x + 25$	17.	$x^2 + 2x + 1$	18.	$4x^{2}-$	12x + 9	
Addi 19.	tional practice: Factor $x^2 - 22x + 121$	20.	$x^2 - 169$	21.	$9x^2 +$	24x + 16	

Math 2 Factoring CW Day 4 Part 2 – Factoring the sum or difference of two cubes Multiply the following:

22. $(x-10)(x^2+10x+100)$ 23. $(x+2)(x^2-2x+4)$ 24. $(a+b)(a^2-ab+b^2)$

25. How are products of each problem the same?

26. Use algebraic vocabulary to describe the pattern shown in each product ______

Factoring a sum or difference of two cubes always follows the same pattern. $a^3 + b^3 = (a+b)(a^2 - ab + b^2)$ $a^3 - b^3 = (a-b)(a^2 + ab + b^2)$

Study these patterns and answer the following questions.

27. Compare the original binomial with the first parentheses in each factor.

28. What is the pattern in the second parentheses compared to the first parentheses?

29. What patterns to you see with the signs throughout the factors?

Use this pattern to factor each of the following.

 30. $x^3 + 8$ 31. $x^3 - 125$ 32. $x^3 - 729$

 33. $8x^3 - 125$ 34. $64x^3 - 125$ 35. $8x^3 + 343$