<u>GCF – Greatest Common Factor</u>	Addition rules
Divide out what each term has in common.	positive + positive = positive
Look for common numerical factors.	negative + negative = negative
Look for common variable factors.	positive + negative or negative + positive =
Look for common negative signs.	subtract and take the sign of the larger digit
Distributing	Addition rules - variables
Multiply the factor in front of the parentheses	Only add like terms
by every term in the parentheses.	ex. $2x + 5x = 7x$
$5x(3x^2 + 2x - 4) = 15x^3 + 10x^2 - 20x$	ex. $9x^2 + 5x^3 + 2x^2 = 11x^2 + 5x^3$
Double Distributing	<u>Multiplication rules</u>
(x+2)(x-5) = x(x-5)+2(x-5)	positive X positive = positive
= x(x-5)+2(x-5)	negative X negative = positive
$= x^2-5x+2x-10$	positive X negative = negative
$= x^2-3x-10$	negative X positive = negative
FOIL First Outer Inner Last $(x+6)(x+7) = x^2 + 7x + 6x + 42$ $= x^2 + 13x + 42$	Multiplication rules - variablesWhen multiplying, multiply the coefficients (numbers in front) and add the exponents with the same base.Ex. $2x \cdot 4x = 8x^2$ Ex. $5x^4 \cdot 2x^2 = 10x^6$
Squaring a binomial Squaring is something times itself. $(3x+5)^2 = (3x+5)(3x+5)$ $= 9x^2 + 15x + 15x + 25$ $= 9x^2 + 30x + 25$	Perfect square trinomial Trinomial that factors into a perfect square. $16x^2 - 24x + 9 = (4x - 3)^2$ Perfect square Double those square root 1 st Square root last term term

$x^{2} + bx + c$ $x^{2} + bx + c = (x + r_{1})(x + r_{2})$ When <i>c</i> and <i>bx</i> are positive <i>r</i> ₁ and <i>r</i> ₂ are both positive.	Sentence for three terms What multiplies to give you But adds to give you
$x^{2} - bx + c$ $x^{2} - bx + c = (x - r_{1})(x - r_{2})$ When <i>c</i> is positive and <i>bx</i> is negative <i>r</i> ₁ and <i>r</i> ₂ are both negative.	$x^{2} \pm bx - c$ $x^{2} \pm bx - c = (x + r_{1})(x - r_{2})$ When <i>c</i> is negative <i>r</i> ₁ and <i>r</i> ₂ are different signs, the bigger one has the sign of <i>bx</i> .
X factor $ax^2 + bx + c$ (x)(x) What multiplies to give you <i>ac</i> but adds to give you <i>b</i> . Divide by <i>a</i> , reduce, bottoms up.	Difference of two squares $a^2 - b^2 = (a - b)(a + b)$ Two squares subtracting, always factors into the same binomials with different middle signs.
Difference of two cubes $a^{3}-b^{3} = (a-b)(a^{2}+ab+b^{2})$ First parenthesis is the same without the cubes. Second parenthesis, first term squared, opposite of product, second term squared.	Sum of two cubes $a^{3} + b^{3} = (a + b)(a^{2} - ab + b^{2})$ First parenthesis is the same without the cubes. Second parenthesis, first term squared, opposite of product, second term squared.
Squares $1^2 = 1$ $6^2 = 36$ $11^2 = 121$ $16^2 = 256$ $2^2 = 4$ $7^2 = 49$ $12^2 = 144$ $17^2 = 289$ $3^2 = 9$ $8^2 = 64$ $13^2 = 169$ $18^2 = 324$ $4^2 = 16$ $9^2 = 81$ $14^2 = 196$ $19^2 = 361$ $5^2 = 25$ $10^2 = 100$ $15^2 = 225$ $20^2 = 400$	Cubes $1^3 = 1$ $6^3 = 216$ $2^3 = 8$ $7^3 = 343$ $3^3 = 27$ $8^3 = 512$ $4^3 = 64$ $9^3 = 729$ $5^3 = 125$ $10^3 = 1000$