GCF - Greatest Common Factor

Divide out what each term has in common.
Look for common numerical factors.
Look for common variable factors.
Look for common negative signs.

Addition rules

positive + positive = positive
negative + negative $=$ negative
positive + negative or negative + positive $=$ subtract and take the sign of the larger digit

Distributing

Multiply the factor in front of the parentheses by every term in the parentheses.
$5 x\left(3 x^{2}+2 x-4\right)=15 x^{3}+10 x^{2}-20 x$

Double Distributing

$$
\begin{aligned}
(x+2)(x-5) & =x(x-5)+2(x-5) \\
& =x(x-5)+2(x-5) \\
& =x^{2}-5 x+2 x-10 \\
& =x^{2}-3 x-10
\end{aligned}
$$

FOIL

$$
\begin{aligned}
& \text { First Outer Inner Last } \\
&(x+6)(x+7)=x^{2}+7 x+6 x+42 \\
&=x^{2}+13 x+42
\end{aligned}
$$

Squaring a binomial

Squaring is something times itself.

$$
\begin{aligned}
(3 x+5)^{2} & =(3 x+5)(3 x+5) \\
& =9 x^{2}+15 x+15 x+25 \\
& =9 x^{2}+30 x+25
\end{aligned}
$$

Addition rules - variables

Only add like terms
ex. $2 \mathrm{x}+5 \mathrm{x}=7 \mathrm{x}$
ex. $9 x^{2}+5 x^{3}+2 x^{2}=11 x^{2}+5 x^{3}$

Multiplication rules

positive X positive $=$ positive negative X negative $=$ positive positive X negative $=$ negative negative X positive $=$ negative

Multiplication rules - variables

When multiplying, multiply the coefficients (numbers in front) and add the exponents with the same base.

Ex. $2 x \cdot 4 x=8 x^{2}$
Ex. $\quad 5 x^{4} \cdot 2 x^{2}=10 x^{6}$

Perfect square trinomial

Trinomial that factors into a perfect square.

$$
\begin{gathered}
\boldsymbol{x}^{2}+\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c} \\
x^{2}+b x+c=\left(x+r_{1}\right)\left(x+r_{2}\right)
\end{gathered}
$$

When c and $b x$ are positive r_{1} and r_{2} are both positive.

Sentence for three terms

What multiplies to give you \qquad
But adds to give you \qquad

$$
\begin{gathered}
\boldsymbol{x}^{2}-\boldsymbol{b} \boldsymbol{x}+\boldsymbol{c} \\
x^{2}-b x+c=\left(x-r_{1}\right)\left(x-r_{2}\right)
\end{gathered}
$$

When c is positive and $b x$ is negative r_{1} and r_{2} are both negative.

X factor $a x^{2}+b x+c$

$\left(\mathrm{x} \quad \mathrm{X}^{\text {_ }}\right)\left(\mathrm{x} _\right.$) $)$ $a c$ but adds to give you b.

Divide by \boldsymbol{a}, reduce, bottoms up.

Difference of two cubes

$$
a^{3}-b^{3}=(\underset{-b}{a-b})\left(a^{2}+a b+b^{2}\right)
$$

First parenthesis is the same without the cubes. Second parenthesis, first term squared, opposite of product, second term squared.

Squares

$1^{2}=1$	$6^{2}=36$	$11^{2}=121$	$16^{2}=256$
$2^{2}=4$	$7^{2}=49$	$12^{2}=144$	$17^{2}=289$
$3^{2}=9$	$8^{2}=64$	$13^{2}=169$	$18^{2}=324$
$4^{2}=16$	$9^{2}=81$	$14^{2}=196$	$19^{2}=361$
$5^{2}=25$	$10^{2}=100$	$15^{2}=225$	$20^{2}=400$

Cubes

$$
\begin{array}{ll}
1^{3}=1 & 6^{3}=216 \\
2^{3}=8 & 7^{3}=343 \\
3^{3}=27 & 8^{3}=512 \\
4^{3}=64 & 9^{3}=729 \\
5^{3}=125 & 10^{3}=1000
\end{array}
$$

